
ARMY RESEARCH LABORATORY

Modifications of the Lethality Server
for Initial RDEC Federation Integration

Geoffrey C. Sauerborn

CwvKwWv/JMvW

ARL-MR-522 DECEMBER 2001

2002020^ 035

Approved for public release; distribution is unlimited.

Java® is a registered trademark Sun Microsystems, Inc.

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of
the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-MR-522 December 2001

Modifications of the Lethality Server for
Initial RDEC Federation Integration

Geoffrey C. Sauerborn
Weapons and Materials Research Directorate

Approved for public release; distribution is unlimited.

Abstract

This report summarizes recent changes in the U.S. Army Research
Laboratory distributed interactive simulation lethality communica-
tions server (the lethality server) and its integration into the Research,
Development, and Engineering Center Federation.

11

ACKNOWLEDGMENTS

The Research, Development, and Engineering Center (RDEC) Federation is a team
effort. Although this report addresses only a single component (the distributed
interactive simulation [DIS] lethality server), that component would not have been
possible except for the support, contributions, and hard work of many individuals, a
few of whom are mentioned here with the author's grateful thanks:

Special thanks to Janet Lacetera and Pat Jones of the U.S. Army Research
Laboratory (ARL) and particularly to Paul Oxenberg, Aberdeen Test Center Virtual
Proving Ground team leader, for vision, direction, and support in these efforts.

Mr. Richard Sandmeyer of ARL is thanked for his outstanding contributions in
coordinating and administering ARL's overall effort with the RDEC Federation and
for being a general "unsung hero" regarding modeling and simulation promotion at
ARL.

Mark Thomas of ARL is thanked for his coordination in (addition to technical work
on the dismounted infantry simulation [DISEM]).

Gary Moss of ARL is thanked for his Java® support. The lethality server Java® client
would have taken many times longer to develop if it were not for his expertise and
active willingness to help.

Ken Smith of ARL is recognized for his original design and implementation of the
dis_manager and most of the DIS manager libraries (ARL-TR-780). Others who have
greatly contributed to the manager over the years include Holly Ingham, James
Bowen, Kevin Brown, Mark Thomas, and Gary Moss.

Michael Muuss (posthumously), Chuck Kennedy, Jerry Clark, and Doug Kingston of
ARL are thanked for their development of the "pkg" library (used by the DIS
manager data transport application program interfaces).

Grateful appreciation is expressed for the dedication of Oanh Tran, Gilbert
Gonzalez, Pam Nguyen, and many others from the Simulation, Training, and
Instrumentation Command for their support during the conference and hosting of the
pre-conference integration.

Greg Tackett and Nancy Boucher of the Armament, Munitions, and Chemical
Command, Richard Pei of the Communications-Electronics Command, Michael Kelly
of the Night Vision Laboratories, and too many more to list are thanked for
managing and shouldering much of the unseen administrative navigation required in
order to consolidate an effort such as the RDEC Federation.

in

INTENTIONALLY LEFT BLANK

IV

Contents

1. Introduction 1

2. The RDEC Federation 1
2.1 Static Integration Component 1
2.2 Dynamic Interoperation Component 2

3. The DIS Lethality Server 4
3.1 Disadvantages Addressed 6

4. Integration 7

5. Recent Changes in the Lethality Server 9

6. Java® Client Application 15

7. Lessons Learned and Possible Future Enhancements 17
7.1 Improving the Lethality Server's Ease of Integration 19
7.2 Need to Explore Alternate Lethality Table Referencing Methods . 20

8. "On-the-fly" Verification and Error Checking 21

9. Summary 22

References 23

Appendix
A. Photos of Simulation Testing 25

Distribution List . 31

Report Documentation Page 35

Figures

1. Concept Evaluation in an Operation Scenario 2
2. Current RDEC Federation Models and Simulations 4
3. VL Server Design: Client Application's View 8
4. DIS Monitor Component of the VL Server 9
5. Standard Damage Entity State Report 10
6. Entity Heartbeat Update 13
7. Damage Source Report 13
8. Simple Java® Client Detonation Report Table 16
9. Graphical Display of Mobility-Firepower-Catastrophic Probability

Distribution for the Selected Impact Event 17
10. Another, More Detailed View of the Lethality Server's Organization. 18

Tables

1. Some Advantages of a Lethality Server 5
2. Some Disadvantages of a Lethality Server 6
3. Dis_Mon: Entity State Report Key 11
4. Simulation Environment Information Recently Added to the DIS

Monitor 12
5. Dis_Mon: "Entity Heartbeat Update" Report Key 14
6. Dis_Mon: "Damage Source Report" Report Key 15
7. Live Exercise Support Functions 21

VI

MODIFICATIONS OF THE LETHALITY SERVER FOR INITIAL
RDEC FEDERATION INTEGRATION

1. Introduction

This report summarizes recent developments in Army modeling and simulation
(M&S) objectives and capabilities, especially as they relate to U.S. Army Research
Laboratory (ARL) participation in the Research, Development, and Engineering
Center (RDEC) Federation project. While this text touches on certain aspects of
the RDEC Federation, it is not the author's intent or purpose to discuss or define
the RDEC Federation. Instead, focus is on the ARL distributed interactive
simulation (DIS) lethality communications server (the lethality server) and its
integration into the RDEC Federation.

Although ARL has plans to implement a similar interface in its high fidelity
survivability models, the lethality server system currently implements only pre-
calculated tabular "look-up" vulnerability results. Factors influencing the
implementation of the future higher fidelity interface are not addressed here.

2. The RDEC Federation

The purpose of the RDEC Federation is to support the Army's needs in the areas
of design, development, testing, and validating future system concepts and
virtual prototypes under the simulation-based acquisition (SBA)/simulation and
modeling for acquisition research and training (SMART) process. To accomplish
this, a set of applications is required to address specific areas of interest and to
simulate them throughout the acquisition cycle. This is the dynamic aspect to the
RDEC Federation. There is also a static (non-simulation run time) component.

2.1 Static Integration Component

The static component of the RDEC Federation is the set of items that basically are
input to simulations. All participating systems (command, control,
communications, computers, and intelligence systems, automotive, armaments,
sensors, etc.) have data descriptions that are known before a simulation begins.
These descriptions are the performance data (and other system descriptions such
as vehicle geometries, terrain locations, scenario descriptions), along with the
specifications for file formats, application versions, and other conventions that
must be established before run time. This must be accomplished to establish a

baseline from which reasonable comparisons may be drawn and to maximize the
collaborative possibilities among federation participants. However, the RDEC
Federation environment is not just a static environment. While the static
environment has value (e.g., to conduct engineering design trade-offs), it is not
intended to stand alone. As previously stated, the static component provides
input to the RDEC Federation's dynamic component.

2.2 Dynamic Interoperation Component

The dynamic component is the environment within which simulations are able to
interact and dynamically affect each other and the environment itself in a
continual feedback manner. To the extent that is practical, this environment is
designed in as generic a manner as possible, thus accommodating a wide range
of current and future M&S applications. Rather than create a specific set of
tightly coupled simulations defining specific systems, the RDEC Federation is
defining an environment to accommodate a host of current and future systems.
This environment includes protocols and object models that support interfaces
with Army M&S capabilities.

For evaluation purposes, a system might then be simulated in a virtual
operational setting, as depicted in Figure 1. Operational experiments among
(possibly distributed) simulations are not the only aspects of the RDEC
Federation environment.

as s i> if ■•:.«.*•..««mi*jwi raft

Figure 1. Concept Evaluation in an Operation Scenario.

The approach is to define the architecture as the interface protocols and objects and to
allow compliant applications to join (and leave) the network as required. This approach is
used by a number of important Department of Defense (DoD) programs, including the
Virtual Proving Ground (VPG) [1], Test Enabling National Architecture (TENA) [2], and
others. VPG and TENA are named explicitly because efforts to ensure a level of
compatibility between these environments and the RDEC Federation are ongoing as it
develops.

The philosophy of defining the interfaces and allowing simulations to join as needed
augments the distributed simulation phenomenon that has been developed over the past
couple decades. It is a natural progression from simulation network (SIMNET) to the
establishment of the DIS standard, and culminating (so far) with the DoD high level
architecture (HLA) standard [3,4/5]- In fact (concerning run time protocols), the current
RDEC Federation version (as it was implemented during the SMART 2001 exercises) is a
hybrid of DIS and HLA. The "Federation" portion of the RDEC Federation name is a
direct application of the HLA Federation [6].

From a network architecture viewpoint, the important job is to standardize data objects
and other specifics that define the interfaces. However, this aspect of the system may be
of little importance to a VPG or RDEC Federation customer. The customer's interest
chiefly concerns "what can the system do for me?" This translates to "what can the
overall system simulate, and will this meet my needs?" Therefore, the customer is
interested in the applications that are available. Current RDEC Federation applications
are a diverse set of high fidelity virtual and constructive models and utilities operating in
multiple force-on-force simulation environment. Depicted in Figure 2 is the RDEC
Federation M&S environment capability used to exercise notional future combat system
concepts demonstrated during the SMART 2001 conference 16-19 April 2001, Orlando,
Florida.

Simulations and applications are depicted (without further explanation) as being
attached to the DIS and/or HLA networks With a subset of these applications, various
exercises involving future system concepts were used to demonstrate the RDEC
Federation concept and its current capabilities during the conference.

'Responsible U.S. Army agencies are listed below:

AMCOM - Aviation and Missile Command
CECOM - Communications Electronics Command
STRICOM - Simulation, Training & Instrumentation Command
TARDEC - Tank Automotive Research, Development, and Engineering Center
ARDEC - Armament Research, Development and Engineering Center
ARL - Army Research Laboratory.
(Note: ARL's ground systems test bed component is a VPG project being developed jointly with the
Developmental Test Command [DTC].)

Serier
ModSÄF

S.CM-

ISAT TSJAV"
EO/ffi rocs

Gmwd
SfewMm

W

SABMTt
stewr/
RFTACS

Ojrylfav

BFV

B»«fc

V%*ai»*ftea

•Ig* ■ *#*

DIS Network
.# :■-"¥"■ ♦ 4 J

DIFM MP-EBM

Fir«.

OICW
OaeSAF
Vir.l ■ SMJfcr

KMi-

M*K V3C*
SAWBCS

\tic<i!r

AFSS
Com»»«

3080*1 33E8MS?

ApackeUfc

CMSe«

APAT
Mm«.
APIA.

E*.

HLA RTI- 1.3 NG V3 Network

t t S
KBCB2,'

cm
IB*

HGPM

Faint the
Kght DISim VTMSS:

DCAI" ;
(GSXB)*:

Si CP»S4

TOAW
FCSKGSX

CO?
Earn

SENSORS

St SoMfer FCSWmfcno

'» .„,'„„„ i

mxfmi CECOM STRICOM TAKBEC ARECC Ml

Figure 2. Current RDEC Federation Models and Simulations.

Figure 2 depicts the HLA/ DIS run time components of the RDEC Federation at the time of
the SMART conference. As explained in section 2.1 the Federation also has a static (pre-
run time) integration component not displayed in Figure 2. This text is not intended to be
a description of either component especially as they are still in development and their
character and composition are expected to evolve with time. They have been presented
here merely as a background and context from which to address the DIS Lethality Server.

3. The DIS Lethality Server

The component application that we are focusing on is the lethality server. The server is
designed for the DIS environment. As such, the server connects on the DIS side of the
RDEC Federation. The server is a combination of application program interface (API)
libraries and utility programs that make it possible to allow multiple applications to
access a single lethality data source. The server delivers pre-calculated lethality outcomes
resulting from any combination of relevant parameters in near real time (on the order of
l/100th of a second), making it suitable for most real time and human-in-the-loop
applications [7]. In this way, the server can be used to uncouple the damage calculation
component from simulations in the distributed environment. However, since damaged
results are normally pre-calculated (and stored in "look-up" tables) inside each

combat simulation, one may ask what advantage is there for a lethality server.
The lethality server offers several advantages by de-coupling the damage
component. These advantages (and some disadvantages) are outlined in Tables 1
and 2.

Table 1. Some Advantages of a Lethality Server

Lethality Server Advantage Explained

A-l The server would have the potential to eliminate DIS interoperability
variances in lethality outcomes (remove "unfair" weapons effects play),
since all DIS simulations will resolve lethality effects through a single,
repeatable means.

A-2 It would allow increased ease of verification, validation, and
accreditation for battle simulations exercises as a result of having a
standard (and centralized) set of unclassified lethality calculations.

A-3 It could decrease DIS simulation development time by providing a
complete, computer platform-generic, vulnerability /lethality handling
mechanism. That is, because the lethality issue has been decoupled
from the rest of the simulation, the lethality handling mechanisms may
be "stubbed out," allowing more time to be devoted to the rest of the
simulation development process.

A-4 Higher fidelity lethality results can be implemented with little
modification of the way a simulation receives that information. The
design of the current table look-up server contains a means whereby
other results (that are not precalculated) could be implemented. That is,
an application could use the same server interface to receive higher
fidelity results if desired (calculated, for example, from a remote
process). However, there is currently no implementation beyond
precalulated look-up tables.

A-5 Using different damage descriptions (beyond just M,F,K) can be
implemented with little modification of the way a simulation receives
that information. In the current server design, there is a means to add
different damage descriptions (such as less-than-lethal) mechanisms or
completely different ways of dividing the lethality "space" [8]. The user
manual walks through the steps taken to add a new lethality
description [9].

In most combat simulations, lethality and vulnerability have to be implemented
somewhere. It does not matter whether it is a first principle calculation or look-
up table (based on first principles); either way, erroneous parameters,
algorithms, or data sources could be misapplied.

While a centralized VL server has the advantage of "off-loading" the task, it can
also off-load the responsibility and create the mistaken assumption that
"somebody else" is going to take care of that aspect the process. Ensuring that
the data are there and are being sought or calculated correctly must be part of the
VL server's implementation and management.

Table 2. Some Disadvantages of a Lethality Server

Disadvantage of a Lethality Server

D-l Client applications (and their operators and sponsors) will have to
"trust" the results returned by the server. Errors may still occur in the
data population or return of vulnerability results; since the server may
not be under a developer's direct configuration, the error can very well
be more difficult to trace (or even detect).

D-2 Response to a VL query (and therefore simulation execution time)
might be longer than without a server. Adding another software layer
will almost never increase overall application speed, especially when
network communications are a part of that added layer.

D-3 There is a danger of erroneous data because of a general lack of
attention.

3.1 Disadvantages Addressed

3.1.1 D-l Addressed

Certain enhancements can be added to the server to help avoid disadvantage
D-l. Low-level "debugging" APIs are already implemented, which provide
vulnerability parameter information (namely, vlp_print_all_params() [9,
Appendix B, VLParam(3)]). In order for a remote client to "check the results,"
this type of information needs to be distributed (provided by a client query as
opposed to an API call). Other information should also be accessible. For
example, if the result is derived from a look-up table, then the exact source of the
table (location and file or record name) along with the algorithm used to obtain
the results from that table should be available to the client.

While these enhancements are necessary for a client to scrutinize a lethality
server's vulnerability results, they are not sufficient. In the author's opinion,
sufficiency would only be approached once these enhancements are "packaged"
in a separate tool complete with an intuitive, easily operated, graphical user
interface (GUI).

3.1.2 D-2 Addressed

Accessing vulnerability data across a network will most certainly be slower than
accessing locally (and inside a simulation). Applications that are highly time
dependent or tightly coupled with other components that are faster than real
time will need to seriously consider the time limitations of a distributed server.
However, applications that are so tightly coupled may never be part of a
distributed environment such as DIS or HLA. If they are, then the timing
limitations may still be within their tolerance (the exact limitations are system
dependent).

The server provides a means to be operated without using the network
communications component. This is accomplished by calling VL (table look-up)
API functions and linking them directly into one's application [7]. Of course,
doing so removes all the advantages listed in Table 1. Still, this might be a
consideration if the server has certain data look-up algorithms or its database is
populated with certain data that an application requires. These may be applied
without added software development or data maintenance overhead.

3.1.3 D-3 Addressed

This is largely a systemic issue as opposed to a technical question. Errors can
enter into the process whether the VL calculation is conducted locally or on some
remote server. Using a VL server can be more efficient because the VL
configuration and management are done once per target-threat and do not have
to be repeated among all participants.

However, it does not grant participants a license to forget about results. Some
automated tools that allow quick "sanity checks" of VL results have already been
suggested in the response to D-l.

4. Integration

This section addresses how the lethality server was integrated into the RDEC
Federation exercises conducted during the SMART conference.

During normal operation, the DIS server is designed to work in a client/server
mode as depicted in Figure 3. The intent is for simulations (or utilities) to act as
"clients". These clients query for the results of a particular detonation or
munitions impact. The server monitors the battlefield environment. It therefore
knows who shot whom with what and can return the results of the detonation to
the querying client. This assumes that the appropriate results have been loaded
into the server's database ahead of time.

While the advantages listed in Table 1 are attractive, none of the other RDEC
Federation applications were prepared to use the server during the SMART 2001
demonstration. Although VL client implementation is straightforward and
basically involves only two fundamental API calls (vls_send() and vls_receive()
to send a query and receive the answer, respectively), it does involve some
programming and testing. None of the participants were able or prepared to
implement this level of integration in time for SMART.

PIS Network Traffic

Client
^ tin

[Client <-

Client <-

Client +-

Figure 3. VL Server Design: Client Application's View.

Furthermore, during integration tests in preparation for the SMART exercise, it
was decided to physically separate the two networks shown in Figure 2 (DIS and
HLA networks). The reasons for this were because some HLA applications were
not able to function properly as a result of the heavy amount of DIS traffic on the
same network. The result was that HLA and DIS applications were unable to
communicate with each other2. However, since lethality server clients operate via
other means (socket connections over a transmission control protocol/internet
protocol link provided by the server's API), no HLA application could
communicate with the server since it was on the DIS sub-network. This had no
impact on the server's role during the SMART tests since the server was basically
in a monitoring role and its only client application was the Java® Client that
resided on the DIS network (see Section 6).

2Except via the HLA/DIS bridge seen as the "HLA Gateway" in Figure 2.

5. Recent Changes in the Lethality Server

In its monitoring role, the server comes equipped with an application that
monitors the DIS environment and pays special attention to lethality-dependent
information (who shot whom with what and the conditions at the time). This
application is called the DIS monitor. The DIS monitor's place within the overall
lethality server architecture is depicted in Figure 4.

DIS Network Traffc

Client
TC

•*
PlPliik ' "N

UDPIhk

VL_Server

Shacd
Meimry Läk

i- ■".■ ■ '-.:•■':.:< - .'■ :■"-'

: DIS Monitor Client

j

Client <—
VLAPi

Data Manager

Client -<

•juiKfc nuoi wiiifj UWI

Figure 4. DIS Monitor Component of the VL Server.

Because the DIS monitor "knows about who shot whom with what and when," it
can use the VL API to service lethality look-up table lethality results and supply
them to the VL_Server. This is how the VL_Server supplies results to clients. The
VL_Server does not actually do any calculating; it merely passes queries (to some
destination; in this case, the DIS monitor) and returns the results.

Another capability the DIS monitor has is its ability to display some of its real-
time "knowledge" of the battlefield state through interactive screen reports.
Figure 5 shows a screen capture of one of these reports (the Standard Entity
Damage State report). Each row of this report displays the state of a single entity.
Since the DIS monitor is only monitoring the battlefield and is not affecting it, the
state information displayed shows the damage state as reported by each entity.
This is not necessarily the damage as calculated by the VL server, since the entity
may not have queried the server but calculated its own damage in some manner.
The Damage State report columns are explained in Table 3.

To support the SMART exercises, additional data items were added to the DIS
monitor's items of interest. These items tracked how often and when the last
update occurred from each entity. Therefore, these data could be applied as a
basic simulation environment monitor. The newly tracked data shown are in
Table 4. These data were then used to create a new report the "Entity Heartbeat
Update," as seen in Figure 6. Table 5 defines the data in the "Entity Heartbeat
Update" report.

ftmBma^^^mm. ■ -. ■ .

tracking 243 Entities in Exercise 1

Thu Ssp 13 10:31:54 EDT 2001
KILL— --Damage- - Times

Frc ID Type Mobil FireP Sight Modrt Dstryd Plm Eng PlmEng Hit

1 1167 "MRAS", 0 0 0 0 0 0 0 o o
1 1086 "RAVE_Mortar", 0 0 0 0 0 0 0 o o
1 1180 unknown 0 0 0 0 0 0 o o o
1 1019 "IUGS IR", 0 0 0 0 0 0 0 o o
1 33 "DI Oobs Post", 0 0 0 0 0 0 o o o
11001 "Mlflbrams"," 0 0 0 0 0 0 o 0 o
1 1016 "IUGS IR", 0 0 0 0 0 0 o o o
1 1031 "A160", 0 0 0 0 0 0 0 o o
1 1012 "IUGS Sft", 0 0 0 0 0 0 0 0 o
1 1108 "RAVE TT MCU", 0 0 0 0 0 0 0 0 o
1 1025 "IUGS IR", 0 0 0 0 0 0 0 o o
1 2 " Advanced Field 0 0 0 0 0 0 0 0 o
1 16384 "DI_M16A2", 0 0 0 0 0 0 o 0 o
1 6 " McDonnell-Doug 0 0 0 0 0 0 0 0 0
1 1105 "RAVE BL0S", 0 0 0 0 0 0 0 o o
1 1110 "RAVE Recon", 0 0 0 0 0 0 0 o o
2 1267 " BMP-2"," 1 1 1 1 1 1 0 1 o
2 1240 " BMP-2"," 1 0 1 1 1 1 0 1 o

■ 2 1150 " T-80 MBT"," 1 1 0 0 0 0 0 o o
■ 2 1001 " 2S6 Quad 30-mm 0 0 0 0 0 0 0 0 0
■ 2 1151 " T-80 MBT"," 1 0 1 1 1 1 0 1 o
■ 2 1258 " BMP-2"," 0 0 0 0 0 0 0 0 o
■ 2 1265 " BMP-2"," 1 0 1 1 1 1 0 1 o
■ 2 1245 " BMP-2"," 0 0 0 0 0 0 0 o o
■ 2 1152 " T-80 MBT"," 1 0 1 1 1 1 0 1 o
■ 2 1302 " BMP-2"," 0 0 0 0 0 0 0 o o
■ 2 10 " T-80 MBT",, 0 0 1 1 1 1 0 1 o
■ 2 1268 " BMP-2"," 1 1 1 1 1 1 o 1 o
■ 2 1178 " T-80 MBT"," 1 1 1 1 1 1 0 1 o
■ 2 1276 " BMP-2"," 1 0 1 1 1 1 0 1 o
■ 2 1249 " BMP-2"," 1 1 1 1 1 1 0 1 0

H FRIENDLY FOES
■ (Force ID 1) (Force ID 2)

I
(blue) (red)

11 «Killed 0
■MKilled 0 1

F
^Killed 0 1
"IFKilled 0 2

1 isimsin
Figure 5. Standard Damage Entity State Report.

Since the Standard Damage Status Report (see Figure 5) does not track how (or
what caused) the damage, a supplemental report was added: the Damage Source
Report (see Figure 7). This report did not require additional internal data fields to

10

be added to the DIS Monitor—just the report page. The fields for this report are
explained in Table 6.

Table 3. Dis_Mon: Entity State Report Key (from Figure 5)

Column Meaning

Entity
Frc This is the "Force" identification of an entity (whose "side" an

entity is on during a battle). Data in this field come from the
"Force ID Field" of the "Entity State PDU" (protocol data
unit). Valid Force IDs are
0 = Other
1 = Friendly
2 = Foe
3 = Neutral

ID This is the Entity ID Field portion of the PDU's Entity
Identifier Record (a three-integer record). These three integers
represent the simulated entity's SITE, HOST, and
APPLICATION. Their combination uniquely identifies an
entity [4, Section 5.3.14.2 "Entity Identifier"]. The "ID" integer
in this column is actually only last of the three 16-bit unsigned
integers ("APPLICATION").

Type This column reports the name of the entity type. The entity
type is a numeric value defined in the Entity Type Record (of
the Entity State PDU). The name seen in this column is the text
name associated with that numeric entity type ID. The text
name comes from the VL Data Manager initialization file's
"DIS_ENTITIES_FILE" record [9, vls_db_init(5)].

Mobil Bool: Set to true (1) if entity is mobility killed
FireP Bool: Set to true (1) if entity is fire power killed

Slight Bool: Set to true (1) if entity is slightly damaged
Modrt Bool: Set to true (1) if entity is moderately damaged.
Dsrryd Bool: Set to true (1) if entity is destroyed.

Plm Bool: Smoke plume is rising from the entity.
Eng Bool: Entity is emitting engine smoke.
PlmEng Bool: Entity is emitting engine smoke and smoke plume is

rising from the entity.

Times Hit This field displays the number of times that dis_mon saw the
entity "hit" by a munition. This is a derived number and does

 not appear in the Entity State PDU3.

KILL

Damage

Smoke

3Note, Figure 6 shows zero hits under the "Times Hit" tally because (in this instance) dis_mon
started monitoring the simulation after the hits occurred. Thus, the actual damage-causing
detonations were never observed (and thus the number of hits were untallied and are unknown).
What is known is the published damage state, as updated by the entity and reflected in "Entity

11

Table 4. Simulation Environment Information Recently-
Added to the DIS Monitor

Data Item Description Purpose

T_Last Time since last entity state
update was seen. This is
monitored for each entity
on the virtual battlefield.

Entity The total number of state
State updates broadcast by an
PDU entity. This is monitored for
Count each entity on the virtual

battlefield.

EntitylD Displays three integers
representing the controlling
entity's Site (location), Host
(computer), and Application
(program or simulation).

Used to monitor for client inactivity
(and possible time-out).
Displayed in: "Time Since Last
PDU" column of "Live Exercise
Status Updates" report. - Figure 6

May identify sources of heaviest
network activity. Certain entities by
virtue of their mission (e.g., a moving
versus a stationary entity) may
produce orders of magnitudes more
network data than others.
Displayed in: "COUNT ES PDUs"
report column (see Figure 6).

It is often useful to identify the
originating computer system or
application from simulation entities.
In particular, when those entities are
displaying "misbehavior" or are not
intended to be a participant in the
current exercise4.
Displayed in: "SITE HOST APP"
report column (see Figure 6).

"It is the responsibility of the DIS application to fill these fields before updates are published.
However, a problem arises in identifying the source of these PDU updates since by definition, the
application may be "rogue" (running out of control) and therefore may not be filling these fields
with the proper data. (This actually happened during the pre-SMART conference integration tests
at STRICOM.) An enhanced identifier scheme would also track the originated IP address from the
user datagram protocol header field. However, this would require some modifications in order to
pull these data from the Muss, Kennedy, Clark, and Kingston (the pkglib) libraries; time did not
allow this.

12

, -Baa
■tracking 243 Entities in Exercise 1

llhu Sen 13 10:29:45 EOT 2001
--Entity —

|Frc ID Type Harking

1 1167 "MRAS", 100B14"
1 1090 "hWS", 100021"
1 1197 "MRAS", 1C0B12"
1 1208 "MRflS", 100F111"
1 3034 "HGM14L", ITEMS"
13037 "AGM114K", ITEMS"
1 1193 "MRflS", 100fll2"
1 1203 "MRflS", 100AM"
1 1192 "HRAS", 100B11"
1 1198 "MRAS", 100A13"
1 1182 "MRAS", 100B13"
1 1129 unknown 100D14"
1 1175 unknown 100B41"
1 3035 "AGH114L", ITEMS"
1 1186 "DI Rifle", 100B32"
1 1229 "DI Rifle", 10OB42"
1 1187 unknown 100B31"
1 1230 unknown 100041"
1 1174 "DI Rifle", 100642"
1 1179 "DlJUfle", 100A32"
1 1086 "RflVE Mortar", 100fl61"
1 1180 unknown 100A31"
1 1016 "IUGS.IR", 100S12"
1 1019 "MS K", IUIS2"
1 1106 "RflVE BLOS", 100D41"
1 33 "Dl.Oobs Post", " C0LT39"
1 1001 " Ml flbransV ■ firebird"
1 1188 ■RflVE TT HOT, 100B21"
1 1116 "RflVE BLOS", 100G12"
1 1031 "H160", H160"
1 1113 "RflVE BLOS", 10OH12"
1 2 " Advanced Field " 2/1/C/2 If
1 16384 "DI M16A2", ' m. Dior
1 6 " McDonnell-Doug " AH64Db "
1 1189 "RAVE TT HCU", 100S22"
1 1105 "RflVE BLOS", 100851"
1 1107 ■RAVE TT MCU", 100032"
1 3 ' Advanced Field " 3/1/C/2 74"
1 1089 "RflVE Hortar", 100B62"
1 1114 ■RflVE BLOS", 100H13"

DIS Enuneration

(1,1,225,4,8,1,0)
(1,1,225,4,8,1,0)
(1,1,225,4,8,1,0)
(1,1,225,4,8,1,0)
(2,2,225,1,3,5,2)
(2,2,225,1,3,5,1)
(1,1,225,4,8,1,0)
(1,1,225,4,8,1,0)
(1,1,225,4,8,1,0)
(1,1,225,4,8,1,0)
(1,1,225,4,8,1,0)

(1,1,225,6,1,30,3)
(3,1,225,1,81,1,0)
(2,2,225,1,3,5,2)
(3,1,225,1,32,1,1)
(3,1,225,1,32,1,1)
(3,1,225,1,81,1,0)
(3,1,225,1,81,1,0)
(3,1,225,1,32,1,1)
(3,1,225,1,32,1,1)
(1,1,225,3,21,7,0)
(3,1,225,1,81,1,0)

(5,1,0,1,9,3,0)
(5,1,0,1,9,3,0)

(1,1,225,4,21,4,0)
(3,1,225,2,0,0,0)
(1,1,225,1,1,1,0)
(1,1,225,4,8,3,2)

(1,1,225,4,21,4,0)
(1,2,225,50,20,0,0)
(1,1,225,4,21,4,0)
(1,1,225,4,9,0,0)

(3,1,225,1,32,1,0)
(1,2,225,20,1,4,0)
(1,1,225,4,8,3,2)

(1,1,225,4,21,4,0)
(1,1,225,4,8,3,2)

(1,1,225,4,9,0,0)
(1,1,225,3,21,7,0)
(1,1,225,4,21,4,0)

—TIME-(sec)-
Slnce Last PDU

31.293407
31.963518
32.43489
31.173603
88.273417
40.563576
31.923411
31.903468
31.883564
31.113591
31.373299
33.463511
75.623369
73.653513
34.633363
46.3540
49.883611
45.473564
33.613450
34.213533
107.133084
54.173388
65.483543
66.323370
68.833553
65.183472
31.413236
38.453415
60.803474
42.303434
60.543513
59.863123
42,203378
54.853538
34.313503
102.643517
57.103442
57.543148
58.313281
50.663526

■C0UNT--
ES PDUs

SITE HOST APP

82
71
77
76
21
80
64
74
85
75
79
2
5
15
12
3
8

14
24
14
2
3
3
3
3
2
9
8
3
3
3
2
4
2
4
2
3
2
2
2

10 2 1167
10 2 1090
10 2 1197
10 2 1208
10 61 3034
10 61 3037
10 2 1193
10 2 1203
10 2 1192
10 2 1198
10 2 1182
10 2 1129
10 2 1175
10 61 3035
10 2 1186
10 2 1229
10 2 1187
10 2 1230
10 2 1174
10 2 1179
10 2 1086
10 2 1180
10 98 1016
10 98 1019
10 2 1106
28 135 33
10 91 1001
10 2 1138
10 2 1116
10 98 1031
10 2 1113
28 135 2
10 44 16384
10 61 6
10 2 1189
10 2 1105
10 2 1107
28 135 3
10 2 1089
10 2 1114

Figure 6. Entity Heartbeat Update (shows the time since the latest entity update
was received and origin of the update).

/ Listening...
PDUs seer: 2994

tracking 239 Entities in Exercise 1

 Event -ID—
—===|- —Firlng_Entlty_Type-

T + T -i—Detonation-

10 2 220 1 [<none> <none> t [(2,8,222,2,2,2,2) » 3 ("Ground In)") 10 2 221 1 , (1,1,222,2,2,1,0)
, (1,1,222,2,2,1,0$

t <none> « (2,8,222,2,2,2,2)
(2,8,222,2,2,2,2)

1 3 ('Ground lip")
1 3 ("Ground lip") 2 222 1 I <none> 1

10 2 223 I (1,1,222,2,2,1,0)
; (1,1,222,2,2,1,0)

t <none> « (2,8,222,2,2,2,2)' 1 3 ('Ground lip")
10 2 224 « t <none> 1 (2,8,222,2,2,2,2) t 3 ("Ground lip")
10 2 225 * <nons> t <none> I (2,8,222,2,2,2,2)'

(2,8,222,2,2,2,2)
I 3 ("Ground ltd')
1 3 ("Ground lip") 10 2 226 1 (1,1,222,2,2,1,0) 1 I <none> i

10 2 227 1 , (1,1,222,2,2,1,0) I <none> t (2,8,222,2,2,2,2) 1 3 ("Ground lip")
10 2 228 t , (1,1,222,2,2,1,0) t <none> t (2,8,222,2,2,2,2) It 3 ('Ground lip")
10 2 229 a (1,1,222,2,2,1,0) t <none> t (2,8,222,2,2,2,2) 1 3 ("Ground lip-)
10 2 230 * (1,1,222,2,2,1,0) t <none> # (2,8,222,2,2,2,2)' 1 0 C Other-)
10 2 231 1 (1,1,222,2,2,1,0) t <none> t (2,8,222,2,2,2,2) 1 0 C Other")
10 2 232 1 (1,1,222,2,2,1,0)

(1,2,225,20,1,4,0)'
(1,2,225,20,1,4,0)'

t <none> * (2,8,222,2,2,2,2)'
(2,2,225,1,3,5,2)'

1 0 (" Other")
1 1 ("Entity lip') 10 61 68 (1 (1,1,222,2,2,1,0)' 1

10 61 76 « 1 (1,1,222,2,2,1,0)] 1 (2,2,225,1,3,5,2)] 1 0 (" Other')

Figure 7. Damage Source Report (who shot whom with what).

13

Table 5. Dis_Mon: "Entity Heartbeat Update" Report Key (from Figure 6)

Column Meaning

Entity
Frc

ID

Type

This is the "Force" identification of an entity (whose "side" an
entity is on during a battle). Data in this field come from the
"Force ID Field" of the "Entity State PDU." Valid Force IDs are
0 = Other
1 = Friendly
2 = Foe
3 = Neutral

This is the Entity ID Field portion of the PDU's Entity Identifier
Record. ID it is actually only the last of the three 16-bit unsigned
integers (SITE, HOST, APP) that identify an entity instance in a
DIS exercise. See (SITE, HOST, APP) column in this table [4,
Section 5.3.14.2, "Entity Identifier"].

This column reports the name of the entity type. The entity type
is a numeric value defined in the Entity Type Record (of the
Entity State PDU). The name seen in this column is the text
name associated with that numeric entity type ID. The text name
comes from the VL Data Manager initialization file's
"DIS_ENTITIES_FILE" record [9, vls_dbjnit(5)].

Sometimes known as the "bumper number" because it is often
informally used to denote the unit designation on vehicles (such
as tanks). In terms of the DIS standard, it is the "Entity Marking
Field" as published by the issuing application [4, Section 5.3.15
"Entity Marking Record"].

These seven numbers represent the entity type record. The
digits represent the subfields "kind," "domain," "country,"
"category," "subcategory," "specific," and "extra" as defined in
the DIS standard [4, Section 5.3.16 "Entity Type Record"]. Their
exact interpretation depends on the enumeration standard used
[5] with modifications conventional to the current exercise.

TIME Since This field shows the time (in seconds) since the DIS monitor last
Last PDU detected a state update (an Entity State PDU) from the entity.

COUNT ES The number in this field represents the total updates (Entity State
PDUs PDUs) detected for the given entity. Certain entities may issue

updates at a greater rate, depending on their actions (for
instance, if they are moving [many state changes] versus if they
are stationary).

Marking

DIS
Enumer-
ation

SITE

HOST

APP

Together, these three columns represent and identify an entity's
unique instance in a DIS exercise. Each entity on the virtual
battlefield has a unique "Entity Identifier" record.

SITE usually denotes a physical location or facility; HOST
identifies the host computer system; and APP usually identifies
an application that is simulating the entity.

[4, Section 5.3.14.2 "Entity Identifier" record!

14

Table 6. Dis_Mon: "Damage Source Report" Report Key (from Figure 7)

Column Meaning

Event ID

Firing Entity
Type

Target Type

Munition Type

Type of
Detonation

Together, the three integers in this column represent and
uniquely identify the detonation event. Each time a "fire" or
"detonation" event occurs on the virtual battlefield, an Event
identifier is issued to identify that event. Sometimes (as is the
case with some explosions such as a demolition charge) only a
detonation event is issued. Other times, there is a "fire" event
associated with a detonation event (such as an artillery munition
launched [the "fire"] and its impact [the "detonation"]). When
fire and detonation events are related, they have the same
"Event ID" [4, Section 5.3.18 "Event Identifier" record].

These seven numbers represent the entity type record that
identifies the munition that has detonated (or impacted). The
digits represent the subfields "kind," "domain," "country,"
"category," "subcategory," "specific," and "extra" as defined in
the DIS standard [4, Section 5.3.16 "Entity Type Record"]. Their
exact interpretation depends on the enumeration standard used
[5] with modifications conventional to the current exercise. For
instance (1,1,222,2,2,1,0) represents a Russian "BMP-2".

This field is the "Entity Type" enumeration for the type of entity
that was targeted by the shooting entity. If the firing entity did
not specify a target, then "<none>" appears.

The "Entity Type" enumeration of the munition used is entered
here.

This field specifies an 8-bit unsigned integer. This number is the
DIS enumeration describing what kind of detonation occurred.
The enumeration as filled by the detonation issuing simulation
and a text interpretation of its value is shown. For instance, "3"
represents a "Ground Impact" [4, Section 5.4.4.2 , Detonation
PDU (10) Detonation Result].

6. Java® Client Application

A simple Java" client was added to the server for the SMART conference. This
client application has access to the usual set of queries available to other VL
server clients. It also allows access to a versatile GUI API (the Java8 graphic
environment objects) and allows a platform-independent means to present
information that is better explained graphically. For instance, Figure 8 shows that
the Java® client employs the "JTable" object from the Java® Swing Toolkit to
display a variation of the "Damage Source Report" (see Figure 7).

15

°\!"o *J Q a ,1?-|flr,::;5 jfc'B-p

Figure 8. Simple Java* Client Detonation Report Table.

The Swing Tookit is part of the standard Java* Development Kit distributed by
Sun Microsystems and contains a wide variety of objects each of which carries a
rich set of features. "JTable" object has a wide variety of programmed methods
that allow the user to "drag" and re-arrange the displayed columns with a
mouse. Additional methods can be added by attaching newly created procedures
to mouse and keyboard events. For example, Figure 9 displays an added
procedure that is the result of selecting ("clicking") a detonation event of
particular interest. In this case, detonation event "10 61 68" was selected (and
highlighted). The result is the graphical representation of the mobility-firepower-
catastrophic probability distributions, based on the initial conditions associated
with that event. (This graphic representation is a bar chart on a scale from 0 to 1
that displays the likelihood that each of the five possible outcomes can occur (M-
Kill, F-Kill, both M and F Kills, K-Kill, and no additional damage). This could
prove useful when a questionable result is occurring during an exercise. By
means of a few mouse clicks, the outcome likelihood can very quickly be "seen".

Other tasks and items can be added to the Java* Client in a similar manner.
These can then be attached to buttons, pull-down menus, and other objects. Of
course, this will take some work, but some of the possible utilities have already
become apparent (see "Future Enhancements").

16

Figure 9. Graphical Display of Mobility-Firepower-Catastrophic Probability
Distribution for the Selected Impact Event.

7. Lessons Learned and Possible Future Enhancements

Operating the look-up table lethality server during the SMART conference
exercises provided valuable insights in terms of lessons learned and insights into
the most optimal path for future improvements. Lessons learned are highlighted
in this section.

The server sustained performance very well against heavy data traffic. One
particularly encouraging result from the exercises was the lethality server's
ability to sustain performance well under heavy network data traffic. Some of the
battle scenarios ran for several hours and involved hundreds of entities that
produced millions of data packets over the course of the simulation. The server
had no difficulties in processing this load. The components within the server that
are responsible for reading DIS network traffic are the ARL DIS manager5. The
DIS manager processed and logged all the data packets. These packets were in
turn passed to the component of the lethality server responsible for monitoring

'The DIS manager reads and supplies DIS data to client applications. It also logs the PDUs and
comes with a number of utilities (such as "Playback," a tool to replay logged DIS traffic) [8,9].

17

the battlefield (the DIS monitor). Figure 4 is further detailed in Figure 10 to
display the DIS manager's placement in the server's architecture.

Client
TCP/IP link

DiS Network Traffic

Client

Client

Client

DIS Server

Shared
Memory Lint

\ DIS Monitor

VLAPI

Single Host Computer

Data Manager

TCP/IP
link

UDP link

ARL DIS
Manager

Figure 10. Another, More Detailed View of the Lethality Server's Organization.

Only certain data packets are of interest to the lethality server (these packets
represented state changes, fire and detonation events). Other packets were
logged but filtered and not passed to the DIS monitor. However, those packets
that were passed represented the vast majority of data packets.

Unfortunately, data flow (to clients) fell on the other end of the spectrum in
terms of stress testing. This is because none of the other RDEC Federation
participating applications and simulations were prepared to use the lethality
server in time for the SMART Conference exercises. Only two clients were
attached at any one time (and these were merely utility clients that come as part
of the lethality server suite: a simple text-based interactive client and the Java®
client).

In summary, both the DIS monitor and DIS manager sustained performance with
excellence in processing a heavy data inflow. However outflow data volume (a
flood of queries) was not sufficiently tested.

Quick analysis was at times cumbersome. For the existing tools, improved
interfaces need to be tailored to better access the available information. The
server was able to use its simulation monitoring capabilities, but their usefulness

18

could have been improved with supporting search tools and GUIs. Several times
during integration tests, the need arose to determine the state of a particular
vehicle or entity or to replay a portion of the exercise for closer examination. The
data logging by the DIS manager captures DIS data packets (called PDUs) into a
single sequential large binary file. With a playback utility, these PDUs may be
replayed at various speeds. However, there is no efficient interface that allows
the PDUs to be searched and browsed.

The DIS monitor logs items of interest (fire events, detonations, the munitions
used, intended targets, etc.) into its own separate flat sequential text file.
However, these data are of select material, which is good as long as all questions
are contained within that material. However, all manner of questions cannot be
anticipated ahead of time. For example, one particular question arose, "Why
didn't this munition destroy that vehicle?" It became cumbersome in the heat of
the moment to manually examine this text log to resolve the issue6. While
sufficient for post-process review, this flat file of selected material was an
inefficient means to quickly search for events related to various entities.

While all information is being captured, it should be better entered in a database
(or at least be exportable in extensible markup language to be read by a
dedicated database management system).

In summary, the data from all events, including special events (such as
detonations), should be logged into a tool more suited for analysis (such as a real
database). The two logs files (from the DIS monitor and DIS manager) should be
more tightly correlated or even be one and the same, thus allowing all manner of
questions to be resolved in a timely manner. The DIS manager's mission
playback capabilities could be enhanced by the addition of bookmark, search,
and browse capabilities. Currently, the DIS manager's playback can only "play"
(or play in a "fast forward" mode). Playback could be enhanced to include the
other standard "VCR-like" features: rewind, reverse, and pause. This should
further be made useful by wrapping all these features into a familiar looking
intuitive and user friendly GUI.

7.1 Improving the Lethality Server's Ease of Integration (into combat
models)

Currently, client applications connect to the DIS look-up table lethality server via
the server-supplied library of APIs. A small but necessary set of APIs is required
in order to query the server: vls_open(), vls_close(), vls_send(), and vls_read()).
Client applications send text queries to the server via the vls_send() API and

6Eventually, the issued was resolved. It was discovered that the vehicle never left its line of
departure and thus stayed out of "harm's way". Therefore, while many other systems were
damaged, this one vehicle remained unscathed. Part of the problem stemmed from determining
which entity was "that vehicle"; another was searching for the lethality server results for
detonations against "that vehicle," of which, there were none.

19

retrieve the results by the vls_read() function. By integrating the functionality of
these APIs into an HLA simulation object model, client applications will no
longer have to link the server's APIs directly into their applications. This would
lower "integration risks" from the client's viewpoint. Furthermore, it is
anticipated that future expansion of RDEC Federation applications (and new
applications) will tend toward HLA instead of the DIS standard.

In summary, the lethality server's functionality should migrate to HLA. Because
the RDEC reference federation object model (FOM) is currently in flux, that
migration should be executed in as flexible a manner as is practical. An HLA
"middleware" approach could aid here, provided that it also has a flexible FOM
design7.

7.2 Need to Explore Alternate Lethality Table Referencing Methods

A shortcut method may be necessary to refer to lethality look-up tables.
Currently, the lethality server is initialized with a look-up table for each possible
combination of munition and target. However, this leads to table references that
grow at a rapid rate (NxM). For instance, the Institute of Electrical and
Electronics Engineers DIS enumeration standard supported by the server
contains eumerations for more than 5,000 separate entities and 1,000 munitions.
This produces more than 5 million table references.

The size is only one aspect to consider. This is an internal implementation
consideration, but reducing memory requirements could enhance performance
and portability. Currently, look-up table references are stored in internal
memory. If each table reference can be restricted to 100 characters, this would
still require about 500 megabytes of random access memory to store8. Ways of
reducing this internal memory requirement could be explored. In practice, this
has not been a problem since all entity and munition types have never appeared
in a single exercise. The largest SMART conference scenarios had hundreds of
entities. However, this required only -50 entity and 25 munition types. Still, this
produced more than 1,000 references, which proved at times too complicated to
manage within a flat data file.

Managing look-up table references could be vastly improved by adding a tool.
This GUI control station for the server would oversee the server's operator
configuration and management. It could check for errors and replications during
the lethality data population phase. Default settings (for the case when no VL
data are available) could be implemented.

7FOM flexibility (or neutrality) refers to the degree to which an application can use any number of
FOMs. A FOM neutral application is not "hard coded" to any particular FOM and thus can be
readily adapted when FOM changes are made.
8One hundred characters times 5 million table references or about 500 million characters.

20

8. "On-the-fly" Verification and Error Checking

Support functions could be added to provide timely and interactive responses
during live simulation exercises. The live exercise environment at the SMART
conference stressed the need for real-time feedback and results checking. Table 7
identifies enhancements to support live exercise feedback and error checking.

Table 7. Live Exercise Support Functions

Function Explanation

Display initial conditions

Display damage source
reference

Display the damage source

Entity Alert

Munition Alert

Display VL parameters that were part of the
calculation of the lethality results.

Display information that identifies the reference
that points to the damage source (the look-up table
reference or other information that describes where
the lethality data can be found) (i.e., display where
the look-up table was found for a particular threat
and munition).

View the look-up table (or other vulnerability
source data) (i.e., browse/view the data as opposed
to where the data originated).

Warns operator of a newly discovered entity for
which there is no known vulnerability reference
(i.e., no damage look-up table).

Warns operator of a newly discovered entity for
which there is no known vulnerability reference
(i.e. /'no damage look-up table was found").

Currently, almost all these enhancements are accessible by some means. That is,
lethality server APIs already exist that include "debugging" print statements that
can be "turned on" to examine how the server derived some result in as
excruciating detail as is deemed necessary. However, this type of analysis is
more suited for the controlled laboratory environment. To make some of these
features readily available for immediate turn-around live analysis, these APIs
need to be applied within the server, and their output must be presented in a
usable manner. In some cases, new APIs will have to be added or old ones
modified. Once applied within the server, the server and client interface libraries
need to be modified to query and return the results of these new services. Finally,
a GUI (such as the Java® client application) has to be modified or created to
implement these functions and present the results in an intuitive and user-
friendly fashion.

21

9. Summary

The RDEC Federation is a project that is bringing together many Army
simulation assets for the purpose evaluating future concepts on a distributed
virtual battlefield. It is a logical continuation and extension of the DoD's M&S
distributed simulation research and capabilities.

The lethality server proved reliable in a live exercise with heavy data flows
received; however, one of its primary design features (providing lethality results
for all exercise participants) was not fully verified.

The SMART Conference provided the opportunity to conduct live trials on
various additions to the server suite (such as the Java® client) and provide
insights for improvements. Most of these improvements support the server's
primary role of providing accurate and timely vulnerability results. Other
improvements support the live exercise and distributed environment to a higher
degree.

22

References

1. Sauerborn, G.C, K.G. Smith, A.W. Scramlin, R.R. Shankle, R.W. Gauss, W.
Zhou, T.R. Perkins, P.E. Corcoran, J.A. Weller, R.W. Marvel, and J.P.
Schimminger, "Project Focus: A Study of Virtual Proving Ground Software
Architecture Requirements," ARL-TR-1429, U.S. Army Research Laboratory,
Aberdeen Proving Ground, MD, September 1997.

2. Dunn, E., and G. Rumford, "TENA: A Domain-Specific Architecture for Live
Participant," Ed Dunn and George Rumford, Paper: 00S-SIW-107, Simulation
Interoperability Workshop Papers, The Simulation Interoperability Standards
Organization (SISO), March 2000.

3. Pope, A., and R. Schaffer, "The SIMNET Network and Protocols," Report No.
7627, BBN Systems and Technologies Corporation, June 1991.

4. Institute for Electrical and Electronic Engineers, "Standard for Distributed
Interactive Simulation - Application Protocols," DIS-4 Version 2.0 4th draft,
(superseded by IEEE 1278.1), Institute for Simulation and Training, Orlando,
FL, 4 February 1994.

5. Institute for Electrical and Electronic Engineers, "IEEE Standard for
Distributed Interactive Simulation," IEEE 1278.[1235], 1995,1996,1997,1998.

6. U.S. Department of Defense, "High-Level Architecture Rules Version 1.3,"
HLA-1,5 February 1998 (20 April 1998 document release).

7. Sauerborn, G.C., "ARL Distributed Interactive Simulation (DIS) Lethality
Communications Server, Volume I: Overview," ARL-TR-1775, p. 1, U.S.
Army Research Laboratory, Aberdeen Proving Ground, MD, February 1999.

8. Deitz, P.H., and M.W. Starks, "The Generation, Use, and Misuse of TKS' in
Vulnerability/Lethality Analysis," ARL-TR-1640, U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, 1997.

9. Sauerborn, G.C., "ARL Distributed Interactive Simulation (DIS) Lethality
Communications Server, Volume II: User and Programmer's Manual," U.S.
Army Research Laboratory, Aberdeen Proving Ground, MD, February 1999.

10. Smith, K., "Distributed Interactive Simulation (DIS) Network Manger," ARL-
TR-780, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD,
December 1994.

23

INTENTIONALLY LEFT BLANK

24

APPENDIX A

PHOTOS OF SIMULATION TESTING

25

INTENTIONALLY LEFT BLANK

26

PHOTOS OF SIMULATION TESTING

For historical purpose, the author gratefully acknowledges Oanh Tran of the
Simulation, Training, and Instrumentation Command (STRICOM) for these and
other excellent photos.

Figure A-l. RDEC Federation Integration Testing at STRICOM One Week Before
the SMART Conference.

Figure A-2. On-lookers Observe a Live Exercise During the SMART Conference.

27

Figure A-3. During the Conference, Mr. Micheal Kelly (Night Vision Laboratory)
Briefs Mr. Hollis Deputy Under Secretary of the Army (Operations
Research), Dr. Bucher, AMCOM, Mr. Pei, CECOM, and Others.

Figure A-4. Selected Panoramic View 1 of the RDEC Federation During
Conference Exercises.

28

Figure A-5. Selected Panoramic View 2 of the RDEC Federation During
Conference Exercises.

Figure A-6. Selected Panoramic View 3 of the RDEC Federation During
Conference Exercises.

29

sSS'sSiSi

l

Figure A-7. ARL-VPG Particpants Left to Right: Gary Moss, Geoff Sauerborn,
Mark Thomas.

Figure A-8. RDEC Federation Particpants Group Photo.

30

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

1 ADMINISTRATOR
DEFENSE TECHNICAL INFO CTR
ATTN DTICOCA
8725 JOHN J KINGMAN RD STE 0944

1 US ARMY INFO SYS ENGRG CMD
ATTNASQBOTD FJENIA
FTHUACHUCAAZ 85613-5300

FTBELVOIR VA 22060-6218 1 US ARMY NATICK RDEC
c ACTING TECHNICAL DIR

1 DIRECTOR
US ARMY RSCH LABORATORY

ATTN SSCNC T P BRANDLER
NATICK MA 01760-5002

!_ ATTN AMSRL CI AI R REC MGMT
2800 POWDER MILL RD 1 US ARMY RSCH OFC
ADELPHIMD 20783-1197 4300 S MIAMI BLVD

RSCH TRIANGLE PK NC 27709
1 DIRECTOR

US ARMY RSCH LABORATORY 1 US ARMY STRICOM
ATTN AMSRL CILL TECH LIB ATTN J STAHL
2800 POWDER MILL RD 12350 RESEARCH PKWY
ADELPHIMD 20783-1197 ORLANDO FL 32826-3726

1 DIRECTOR
US ARMY RSCH LABORATORY
ATTN AMSRL D D SMITH
2800 POWDER MILL RD
ADELPHIMD 20783-1197

1 US ARMY TANK-AUTOMOTIVE &
ARMAMENTS CMD

ATTN AMSTA AR TD M FISETTE
BLDG1
PICATINNY ARSENAL NJ 07806-5000

1 DOD JOINT CHIEFS OF STAFF
ATTN J39 CAPABILITIES DIV

CAPT J M BROWNELL
THE PENTAGON RM2C865
WASHINGTON DC 20301

1

1

US ARMY TANK-AUTOMOTIVE CMD
RD&E CTR
ATTN AMSTA TA J CHAPIN
WARREN MI 48397-5000

US ARMY TRADOC
1 OFC OF THE DIR RSCH AND ENGRG

ATTN R MENZ
PENTAGON RM3E1089
WASHINGTON DC 20301-3080

1

BATTLE LAB INTEG & TECH DIR
ATTNATCDB JAKLEVECZ
FTMONROEVA 23651-5850

NAV SURFACE WARFARE CTR
2 OFC OF THE SECY OF DEFNS

ATTN ODDRE (R&AT) G SINGLEY
ODDRE (R&AT) S GONTAREK

THE PENTAGON
WASHINGTON DC 20301-3080

ATTN CODE B07 J PENNELLA
17320 DAHLGRENRD
BLDG 1470 RM 1101
DAHLGREN VA 22448-5100

' 1 DARPA
1 AMCOM MRDEC

ATTN AMSMI RD W C MCCORKLE
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

- REDSTONE ARSENAL AL
35898-5240 1 HICKS & ASSOCIATES, INC.

A TTKT n QTMrjT PV TTT

CECOM
SP & TERRESTRIAL COM DIV
ATTN AMSEL RD ST MC M

H SOICHER
FT MONMOUTH NJ 07703-5203

1710 GOODRICH DR STE 1300
MCLEAN VA 22102

31

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

1 SPECIAL ASST TO THE WING CDR
50SW/CCX CAPT P H BERNSTEIN
300 O'MALLEY AVE STE 20
FALCON AFB CO 80912-3020

CDR TARDEC
ATTN AMSTA TR D M/S 207

FSCS R HALLE G SIMON
WARREN MI 48397-5000

HQ AFWA/DNX
106 PEACEKEEPER DR STE 2N3
OFFUTT AFB NE 68113-4039

APPLIED RSCH ASSOCIATES INC
ATTN ROBERT SHANKLE
219 W BEL AIR AVE STE 5
ABERDEEN MD 21001

CDR US ARMY AVIATION RDEC
CHIEF CREW ST R7D
MS 243-4 (DR N BÜCHER)
AMES RSCH CTR
MOFFETT FIELD CA 94035

ITT INDUSTRIES
ATTN CHARLES WOODHOUSE
2560 HUNTINGTON AVE
ALEXANDRIA VA 22303

ITT INDUSTRIES
ATTN MICHAEL O'CONNOR
600 BLVD SOUTH STE 208
HUNTSVILLE AL 35802

RAYTHEON SYSTEMS COMPANY
ATTN JOHN D POWERS
6620 CHASE OAKS BLVD MS 8518
PLANO TX 75023

OPTOMETRICS INC
ATTN FREDERICK G SMITH
3115 PROFESSIONAL DR
ANN ARBOR MI 48104-5131

CDR ARDEC
ATTN AMSTA AR FSS J CHU

D MILLER B DAVIS
PICATINNY ARSENAL NJ 07806-5000

DEF THREAT REDUCTION AGENCY
ATTN SWE W ZIMMERS
6801 TELEGRAPH RD
ALEXANDRIA VA 22310

JOINT VIRTUAL BATTLE SPACE
ATTN MAJ R SCHWARZ J GARCIA
10401 TOTTENRD
BLDG399 STE 325
FTBELVOIR VA 22060-5823

U.S. SBCCOM
NATICK SOLDIER CENTER
ATTN AMSSB RSS MA (N) D TUCKER
KANSAS STREET
NATICK MA 01760-5020

HQ OPERATIONAL TEST CTR
ATTN CSTE OTC MA S

CSTE OTC MA S J HAMILL
BLDG 91012
FT HOOD TX 76544-5068

SANDIA NATL LABORATORIES
ATTN MJ MCDONALD
PO BOX 5800 MS-1004
ALBUQUERQUE NM 87185-1004

ABERDEEN PROVING GROUND

DIR US ARL
ATTN AMSRL SL EP G MAREZ
WSMR NM 88002

DIR US ARMY TRAC
ATTNATRCWE L SOUTHARD

ATRCWEC JAGUILAR
C DENNY DDURDA
P SHUGART

WSMRNM 88002

DIRECTOR
US ARMY RSCH LABORATORY
ATTN AMSRL CI LP (TECH LIB)
BLDG 305 APGAA

DIR AMSAA
ATTN PDEITZ MBORROUGHS

BBRADLEY DHODGE
DON JOHNSON A WONG

BLDG 392

32

NO. OF
COPIES ORGANIZATION

1 DIRECTOR
US ARMY RSCH LABORATORY
ATTN AMSRL WM J SMITH
BLDG 4600

1 DIRECTOR
« US ARMY RSCH LABORATORY

ATTN AMSRL WM B A HORST
BLDG 4600

\
1 US ARMY RSCH LABORATORY

ATTN AMSRL WM BE R SANDMEYER
BLDG 328

5 US ARMY RSCH LABORATORY
ATTN AMSRL WM BE L BUTLER

J ANDERSON R BOWERS
C KENNEDY P TANENBAUM

BLDG 238

75 DIRECTOR
US ARMY RSCH LABORATORY
ATTN AMSRL WM BF J LACETERA

G SAUERBORN (74) CYS)
BLDG 309

2 DIRECTOR
US ARMY RSCH LABORATORY
ATTN AMSRL CI CT G MOSS

M THOMAS
BLDG 321

33

INTENTIONALLY LEFT BLANK

34

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing «tote sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any otheraspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations a^nd Reports, 1215 Jefferson
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 2001

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Modifications of the Lethality Server for Initial RDEC Federation Integration

6. AUTHOR(S)

Sauerbom, G.C. (ARL)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 21005-5066

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 21005-5066

5. FUNDING NUMBERS

PR: AH 43 and AH80

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARL-MR-522

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report summarizes recent changes in the U.S. Army Research Laboratory distributed interactive simulation lethality
communications server (the lethality server) and its integration into the Research, Development, and Engineering Center
Federation.

14. SUBJECT TERMS

distributed interactive simulation (DIS) lethality
high level architecture (HLA) RDEC

vulnerability

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

40
16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-89) -. c
Prescribed by ANSI Std. Z39-18 J->
298-102

